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The shear lift force on a spherical bubble in an unbounded shear flow at low Reynolds 
number is derived. It is two thirds of that for a solid sphere. An approximate expression 
for the shear lift force at finite Reynolds number and finite shear rate is obtained by an 
interpolation using the present result and Auton's result at large Re and small shear rate 
(Auton, T. R. 1 987. J. F/uid Mech., 183, 190-218). 
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1. Introduction 

The successful prediction of vapor bubble departure and lift-off 
from a heating surface in forced-convection boiling requires 
detailed knowledge of the hydrodynamic forces acting on the 
bubble (Klausner et ai., 1992). An important force component 
contributing to the vapor bubble lift-off process, which can be 
important at moderate Reynolds number, is the shear lift force 
due to the mean flow gradient near the wall. Despite many 
efforts to predict both the inertial migration velocity and the 
shear lift force on a solid particle in bounded and unbounded 
shear flows (Saffman 1965; Ho and Leal 1974; Vasseur and 
Cox 1976; Cox and Hsu 1977; Drew 1978, 1988; Schonberg 
and Hinch 1989; McLaughlin 1991; Dandy and Dwyer 1990) 
and the shear lift force on a bubble in an inviscid shear flow 
(Auton 1987), little attention has been paid to the shear lift 
force on bubbles at low Reynolds number, let alone the case of 
nonspherical bubbles attached to a wall as found in 
forced-convection boiling. The objective of this work is to 
evaluate the shear lift force on a spherical bubble with 
negligible rotation in an unbounded shear flow in the low 
Reynolds number limit and to use an interpolation scheme to 
obtain a general approximation for the shear lift force at finite 
Reynolds number and shear rate. Such information is not 
currently available and warrants the attention it is given here. 

Saffman (1965, 1968) derived the shear lift force on a solid 
sphere at zero Reynolds number to be 

E L = 6.46pvl/2a2(U - V)ldU/dyl  1/2 sign (dU/dy) (1) 

where p and v are the fluid density and kinematic viscosity, 
respectively, a is the radius of the sphere, U and V are the 
respective velocities of the fluid and particle in the x-direction, 
and dU/dy  is the shear rate of the mean flow. It is noted that 
the lift force is proportional to the square root of the shear 
rate. In deriving Equation 1, it was assumed that 

Re s = vs2a/v ,~ 1, (v s = [U -- V]) (2) 

Re~ = G(Za)2/v ~, 1, (G = IdU/dy[) (3) 

Re n = Q(2a)2/v ,~ 1 (4) 
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and 

Res ,~ Re~/2 or e = Re~/2/Res >> 1 (5) 

where Q is the rotational speed of the sphere. McLaughlin 
(1991) extended the result of Saffman to include arbitrary e so 
that the restriction given by Equation 5 in Saffman's analysis 
is removed. The lift force for arbitrary e can be expressed as 

CL/CLs a = 0.443 J(e) (6) 

where 

C L = Flf[½~za2pv 2] (7) 

and the subscript "Sa" denotes Saffman's result, which is 
recovered as J -* 2.255 for large e. McLaughlin found that J(e) 
decreases to zero rapidly as e decreases. Numerical results for 
the shear lift force on a solid sphere were obtained by Dandy 
and Dwyer (1990) for Re s ranging from 0.1 to 100 and for the 
dimensionless shear rate 

ot = Ga/v s = ½Res e2 (8) 

ranging from 0.005 to 0.4. Mei (1992) proposed a unified 
approximate expression for the shear lift force on a solid sphere 
for Re s < 100 based on the results of Saffman (1965, 1968) and 
Dandy and Dwyer (1990). 

Auton (1987) derived an expression for the shear lift force on 
a sphere in an inviscid shear flow, which is applicable to the 
motion of large spherical bubbles for ct ,~ 1. It was found that 
the lift force in inviscid shear flow is proportional to ~ in the 
limits ct ~ 0 and Re --* oo. The resulting lift coefficient is 

CL = ¼~ (9) 

In this work, uniform shear flow over a spherical bubble is 
considered. This differs from the problem considered by 
Saffman (1965) only in the boundary condition on the sphere 
surface. The shear stress-free condition is enforced on the 
bubble surface in lieu of the usual no-slip condition applied to 
the solid particle surface. To avoid the complex procedure of 
matching the inner and outer solutions, the approach outlined 
by McLaughlin (1991) is closely followed. By evaluating the 
inertial migration velocity, rather than the lift force directly, 
the shear lift force on the bubble can be easily obtained from 
the numerical results given by McLaughlin (1991) using the 
relationship between the lift force and the migration velocity 
given in Saffman (1965). An expression for the shear lift force 
at finite Reynolds number and finite shear is suggested by 

62 Int. J. Heat and Fluid Flow, Vol. 15, No. 1, February 1994 



interpolating the present result at small Re and Auton's (1987) 
result at large Re and small shear. While the precise 
determination of the shear lift force on a nonspherical bubble 
attached to a wall is not yet possible, an understanding as to 
the effects of the shear rate and Reynolds number is gained, 
and qualitative predictions can be made. Furthermore, the 
result is directly applicable to vapor bubbles in forced- 
convection boiling that have already lifted off the heating 
surface as well as to small spherical bubbles in turbulent free 
shear flows. 

2. Analysis 

Consider a uniform shear flow over a stationary spherical 
bubble with velocity v = (Gxl + vs)ea at infinity. Here e3 and 
x3 are respectively the unit vector and coordinate in the 
direction of the undisturbed flow, and Xl is the coordinate 
along which the undisturbed velocity varies with x = 
(xl, x2, x3), constituting a Cartesian coordinate system. For  
Res ,~ 1, an inner region exists where the effects of inertia are 
small compared to the viscous effects and an outer region exists 
where the effects of inertia are comparable to the viscous effects 
(Proudman and Pearson 1957). A matched asymptotic method 
is therefore needed to systematically solve the flow field, thus 
including the effects of inertia in the lift force. Because the 
method we adopt here for the bubble is based on what has 
been successfully applied to a solid sphere, the solution 
procedure for evaluating the shear lift force over a solid sphere 
is briefly summarized as follows. 

2.1 Shear f l ow  over a sol id  sphere 

For a shear flow over a solid sphere, Saffman (1965) showed 
that the calculation of the lift force is a singular perturbation 
problem and the effect of the sphere in the outer region can be 
replaced by a point force, F~ = 6n#v,a, which is the Stokes drag 
at very small Reynolds number. The outer solutions for the 
velocity and the pressure were obtained in wavenumber space 
and expressed in the form of multidimensional integration. 
McLaughlin (1991) extended Saffman's work to arbitrary shear 
rate by retaining the additional convective term that arises from 
the shear. The resulting linearized momentum equation in the 
outer region was 

~v 1 F 
(v, + Gxl) ~x 3 + Gvle 3 = - -p Vp + vV2v - -p 6(x) (10) 

where p denotes pressure, F is the point force (which equals 
6n#vsae 3 to the zeroth order in inertial effects), and 6(x) is the 
three-dimensional (3-D) delta function. Equation 10 in the 
outer field was then solved in wavenumber space. The shear 
lift force was evaluated numerically in terms of the inertial 
migration velocity, and hence tedious integration for the lift 
force based on the inner solution was avoided. McLaughlin's 
(1991) approach for evaluating the shear lift force on a solid 
particle is used here for the bubble. 
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2.2 Uni form f l ow  over a sphere 

For an unbounded liquid flow over a spherical bubble, the 
inner (creeping flow) solutions for the stream function ~b, 
vorticity (, and pressure p are 

~k(r, O) = ~ [ ( r / a )  2 - -  r/a] sin 2 0 (11) 

((r, 0) = - v,a sin 0 (12) 
r 2 

p(r, O) = Vsa cos 0 (13) 
- / z  7 

(see Sherman 1990, for example), where r is the radius of 
position in the flow field measured from the center of the sphere 
and 0 is measured from the rear stagnation point. The 
no-penetration and zero shear stress conditions are satisfied by 
Equation 11. The above solutions for ~(r, 0) and p(r, 0) are those 
for Stokes flow over a solid sphere reduced by a factor of two 
thirds. The vorticity and pressure given by Equations 12 and 
13 are also that of a Stokeslet, (Stok©slet(r, 0)  = -(vsa/r 2) sin 0 
and Pstoke,let(r, 0 )=  --#(v,a/r 2) cos 0. The stream function of 
the Stokeslet, ~bstoke,let(r, 0 )= - - ( r avJ2 ) s in20 ,  leads to the 
solution for a uniform flow over a bubble given by Equation 
11 when it is combined with that of the uniform stream. The 
drag on the bubble in the flow direction is 

F b = 4rc#v,a (14) 

which is two thirds of the Stokes drag on a solid sphere F,. It 
is noted that the solutions (stok=,~,, and Ps,ok,~,t are the only 
dynamically important contributions for p(r, O) and ((r, 0) as 
r ~ oo in the Stokes region for a uniform flow over a bubble or 
solid sphere. Thus, when matching between the inner and the 
outer solution is rigorously pursued for a bubble using the 
approach outlined in Proudman and Pearson (1967), it can be 
readily shown that the outer solution for the stream function 
is exactly two thirds of that for a solid sphere to the first order 
in Re. This clearly demonstrates that the influence of the bubble 
(in the inner region) on the outer field can be approximated by 
a point force 

F = Fbe a = 4rr#vsae a (15) 

to the first order in the inertial effect. This observation is used, 
together with the method developed for the shear flow over a 
solid sphere, to derive an expression for shear lift force over a 
spherical bubble. 

2.3 Shear f l ow  over a bubble 

The foregoing analyses suggest that momentum transport 
governing the outer field velocity in the case of shear flow over 
a bubble can also be described by Equation 10 with the point 
force F given by Equation 15. The rationale for the above 
approximation may also be explained from a physical point of 
view as follows. To an observer in the outer region, the sphere 

Notation 

a Bubble radius (m) 
C L Lift coefficient 
F Force (N) 
G Magnitude of fluid velocity gradient (s-1) 
Re Reynolds number 
v Fluid velocity in Cartesian coordinates (m/s) 

v s Upstream fluid velocity seen by a bubble at its center 
(m/s) 

x Cartesian coordinates (m) 

Greek symbols 
~t Dimensionless shear rate 
p Fluid density (kg/m a) 
v Kinetic viscosity (m2/s) 

Dynamic viscosity (pa/s) 
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shrinks to a point as r --* 0o. Whether this sphere is immobile or 
free to move on its surface is immaterial as long as its effect on 
the outer field is correctly described, in this case through the 
point force given by Equation 15. An asymptotic analysis for 
the far field behavior of the Stokes solution for uniform flow 
over an arbitrary 3-D body is given in Batchelor (1967) and is 
also applicable to the case of uniform flow over a bubble. 

Substituting F = Fbe 3 given by Equation 15 into Equation 
10, following the detailed procedures outlined by McLaughlin 
(1991), the inertial migration velocity for the bubble due to the 
mean flow gradient can be obtained as 

1 
/ ) b m  = ~ 2  avs(G/v)l/2 J(e), with J (~ )  = 2.255 (16) 

which is two thirds of the migration velocity for a solid 
sphere found by McLaughlin. In the above, the subscript "b" 
denotes the result for a bubble. The numerical values of J(e), 
as well as some asymptotic expansions for J(e), were given by 
McLaughlin (1991). A curve fit based on the numerical values 
given by McLaughlin was obtained by Mei (1992) for 
0.1 < e < 2 0 a s  

J(e) ,~ 0.6765{1 + tanh [2.5(log10e + 0.191)]} 

x {0.667 + tanh [6(e - 0.32)]} (17) 

Thus, the shear lift force on a spherical bubble can be 
obtained as 

r b L  = 1.91J(e)pvl/2a2vs[G[1/2 sign (G) (18) 

In the limit e - ,  0% F b L  is tWO thirds of the value for a solid 
sphere given by Saffman (1965). 

3. R e s u l t s  a n d  d i s c u s s i o n  

Equation 18 is a useful result because there are some 
generalizations that may be made to extend its applicability for 
engineering applications. 

3. I Extension to a fluid sphere of  arbitrary viscosity 

For a uniform creeping flow over a fluid sphere, the solutions 
for the stream function, vorticity, and pressure, as well as the 
hydrodynamic drag, have been obtained by Hadamard and 
Rybczynski (see Sherman 1990). The drag on the fluid sphere is 

Ff lu i  d = 67Zl~oVsa (3 + 2#o/10/(3 + 3/~o//h) (19) 

where #o and ~i are the dynamic viscosities of the outer fluid 
and the fluid sphere, respectively. 

Again, as the sphere shrinks to zero to an observer in the 
outer region, the boundary condition on the surface of the 
sphere is immaterial, and the effect of the sphere on the outer 
field can be approximated by a point force with F = Ff lu lde  3. 

This leads to the following expression for the shear lift force 
on a fluid sphere 

F f l u i d ,  L = 2.865 J(e)(3 + 2/to/#i)/(3 + 3#o/#i) 
X pvl/2a2Vs I G I 1/2 sign (G) (20) 

which reduces to the result for a bubble as #o/#i - '  ~ and for 
a solid sphere as ,Uo/Pi --* O. 
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Figure I. CL as calculated from Equation 21, with the transition 
between the limits Re---,0 and Re--*oo observed in the range 
Re ~ 1-10 

numerical results given by Dandy and Dwyer (1990) was not 
encouraging, as shown in Mei (1992), for small c( or e in the 
low Re limit. However, there are reasons to believe that the 
accuracy of the numerical results of Dandy and Dwyer (1990) 
at very small ~ or e in the low Re limit is influenced by the 
relatively small size of the computational domain. As Dandy 
and Dwyer have reported, the sign of the computed lift force 
was different when the computational domain was varied from 
10, 15, 20, and 25 radii of the sphere; also, their results were 
obtained using a computational domain of 25 radii. However, 
in the low Re limit, the lift force results from the inertia effect 
far away from the sphere, and it is likely that 25 radii are still 
too small a number to capture the inertial effect. Although there 
are no numerical results presently available for the shear force 
on a spherical bubble at small Re to verify the validity of 
Equation 18 for low and finite values of e, the shear lift 
expression given by Equation 18 is perhaps the most reliable 
one for a bubble at low Re. 

Based on the development of the interpolation formula given 
by Mei (1992) for the solid sphere, using the result of Auton 
(1987) for the large Re limit, assuming that the shear lift force 
on the bubble is linear in c( in the large Re limit (as is the case 
for a solid sphere at Re > 40), and using the present result 
(Equation 18) for the low Re limit, the following simple 
interpolation for the shear lift force has been obtained: 

(L ReZ/Z ] \3~'/zJ J 
~ 2 (21) 

with G L defined by Equation 7. The above follows the 
analytical results only in the limits Re--+ 0 or Re--+ oo with 
small cc It is speculative in the intermediate ranges of Re and 
c~. The suggested value for n (= 2) is based on the expectation 
that the transition between these two limits occurs at 
Re ~ 1-10, since in this range of Re the flow is neither viscous 
dominant nor inviscid. Figure 1 shows GL based on the above 
interpolation. It is observed that the limiting values are 
recovered. Since, to the best knowledge of the authors, there is 
no expression yet available for the shear lift force on a spherical 
bubble for a large range of Reynolds number, the proposed 
interpolation (Equation 21) should be useful in estimating the 
shear lift force on a bubble in a shear flow. 

3.2 An interpolation for finite Reynolds number 

The result given by Equation 6 for the shear lift force on a 
solid sphere includes the effect of inertia at finite e. The 
comparison between the results given by Equation 6 and the 
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